Web of Science: 1 citations, Scopus: 2 citations, Google Scholar: citations
Resource-acquisitive species have greater plasticity in leaf functional traits than resource-conservative species in response to nitrogen addition in subtropical China
Zhang, Xue (Fujian Normal University. Fujian Provincial Key Laboratory of Plant Ecophysiology)
Li, Baoyin (Fujian Normal University. Fujian Provincial Key Laboratory of Plant Ecophysiology)
Peñuelas, Josep (Centre de Recerca Ecològica i d'Aplicacions Forestals)
Sardans i Galobart, Jordi (Centre de Recerca Ecològica i d'Aplicacions Forestals)
Cheng, Dongliang (Fujian Normal University. Fujian Provincial Key Laboratory of Plant Ecophysiology)
Yu, Hua (Minjiang University. Ocean College)
Zhong, Quanling Lin (Fujian Normal University. Fujian Provincial Key Laboratory of Plant Ecophysiology)

Date: 2023
Abstract: The evergreen broad-leaf forest is subtropical zonal vegetation in China, and its species diversity and stability are crucial for maintaining forest ecosystem functions. The region is generally affected by global changes such as high levels of nitrogen deposition. Therefore, it is critical to determine the adaptation strategies of subtropical dominant species under nitrogen addition. Here, we conducted two-year field experiments with nitrogen addition levels as 0 kg N ha−1 yr−1 (CK), 50 kg N ha−1 yr−1 (LN) and 100 kg N ha−1 yr−1 (HN). We investigated the effects of nitrogen addition on leaf functional traits (including nutrition, structural and physiological characteristics) of five dominant species in subtropical evergreen broad-leaf forest. Results suggested that the effect of nitrogen addition on leaf functional traits was species-specific. Contrary to Rhododendron delavayi and Eurya muricata, Quercus glauca, Schima superba and Castanopsis eyrei all responded more to the HN treatment than LN treatment. Compared to other leaf functional traits, leaf anatomical structure traits had the highest average plasticity (0. 246), and the relative effect of leaf photosynthetic property was highest (7. 785) under N addition. Among the five species, S. superba was highest in terms of the index of plasticity for leaf functional traits under nitrogen addition, followed by Q. glauca, E. muricata, C. eyrei and R. delavayi. The major leaf functional traits representing the economic spectrum of leaves (LES) showed resource acquisitive strategy (high SLA, LNC, LPC, Pn) and conservative strategy (high LTD, LDMC, C/N) clustering on the opposite ends of the PCA axis. The PCA analysis indicated that species with high leaf plasticity adopt resource acquisitive strategy (S. superba and Q. glauca), whereas species with low leaf plasticity adopt resource conservative strategy (E. muricata, C. eyrei and R. delavayi). In aggregate, resource-acquisitive species benefit from nitrogen addition more than resource-conservative species, suggesting that S. superba and Q. glauca will occupy the dominant position in community succession under persistently elevated nitrogen deposition.
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Subject: N addition ; Leaf functional traits ; Dominant species ; Phenotypic plasticity ; Photosynthesis
Published in: Science of the total environment, Vol. 903 (December 2023) , art. 166177, ISSN 1879-1026

DOI: 10.1016/j.scitotenv.2023.166177


Available from: 2025-12-30
Postprint

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > CREAF (Centre de Recerca Ecològica i d'Aplicacions Forestals)
Articles > Research articles
Articles > Published articles

 Record created 2023-11-22, last modified 2024-05-18



   Favorit i Compartir