| Home > Articles > Published articles > Bers' constants for punctured spheres and hyperelliptic surfaces |
| Date: | 2012 |
| Abstract: | The main goal of this paper is to present a proof of Buser's conjecture about Bers' constants for spheres with cusps (or marked points) and for hyperelliptic surfaces. More specifically, our main result states that any hyperbolic sphere with n cusps has a pants decomposition with all of its geodesics of length bounded by 30√2π(n-2). Other results include lower and upper bounds for Bers' constants for hyperelliptic surfaces and spheres with boundary geodesics. |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Bers' constants ; Riemann surfaces ; Simple closed geodesics ; Teichmüller and moduli spaces |
| Published in: | Journal of Topology and Analysis, Vol. 4, Num. 3 (September 2012) , p. 271-296, ISSN 1793-7167 |
Postprint 22 p, 510.2 KB |