A zoll counterexample to a geodesic length conjecture
Balacheff, Florent Nicolas 
(University of Geneva. Department of Mathematics)
Croke, Christopher (University of Pennsylvania. Department of Mathematics)
Katz, Mikhail G. 
(Bar Ilan University. Department of Mathematics)
| Date: |
2009 |
| Abstract: |
We construct a counterexample to a conjectured inequality L ≤ 2D, relating the diameter D and the least length L of a nontrivial closed geodesic, for a Riemannian metric on the 2-sphere. The construction relies on Guillemin's theorem concerning the existence of Zoll surfaces integrating an arbitrary infinitesimal odd deformation of the round metric. Thus the round metric is not optimal for the ratio L/D. |
| Rights: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Language: |
Anglès |
| Document: |
Article ; recerca ; Versió acceptada per publicar |
| Subject: |
Closed geodesic ;
Diameter ;
Guillemin deformation ;
Sphere ;
Systole ;
Zoll surface |
| Published in: |
Geometric and Functional Analysis, Vol. 19, Issue 1 (May 2009) , p. 1-10, ISSN 1420-8970 |
DOI: 10.1007/s00039-009-0708-9
The record appears in these collections:
Articles >
Research articlesArticles >
Published articles
Record created 2024-01-23, last modified 2025-03-29