Web of Science: 11 cites, Scopus: 12 cites, Google Scholar: cites
An annotated human blastocyst dataset to benchmark deep learning architectures for in vitro fertilization
Kromp, Florian (Software Competence Center Hagenberg)
Wagner, Raphael (Software Competence Center Hagenberg)
Balaban, Basak (American Hospital of Istanbul)
Cottin, Véronique (Viollier AG)
Cuevas-Saiz, Irene (Hospital General Universitario de Valencia)
Schachner, Clara (Software Competence Center Hagenberg)
Fancsovits, Peter (Semmelweis University)
Fawzy, Mohamed (IbnSina and Banon IVF Centers)
Fischer, Lukas (Software Competence Center Hagenberg)
Findikli, Necati (Bahceci Fulya IVF Centre Istanbul)
Kovačič, Borut (University Medical Centre Maribor)
Ljiljak, Dejan (Sestre Milosrdnice University Hospital Center)
Martínez-Rodero, Iris (Universitat Autònoma de Barcelona)
Parmegiani, Lodovico (Next Fertility GynePro)
Shebl, Omar (Kepler University Linz)
Min, Xie (University Hospital Zurich (Suïssa))
Ebner, Thomas (Kepler University Linz)

Data: 2023
Resum: Medical Assisted Reproduction proved its efficacy to treat the vast majority forms of infertility. One of the key procedures in this treatment is the selection and transfer of the embryo with the highest developmental potential. To assess this potential, clinical embryologists routinely work with static images (morphological assessment) or short video sequences (time-lapse annotation). Recently, Artificial Intelligence models were utilized to support the embryo selection procedure. Even though they have proven their great potential in different in vitro fertilization settings, there is still considerable room for improvement. To support the advancement of algorithms in this research field, we built a dataset consisting of static blastocyst images and additional annotations. As such, Gardner criteria annotations, depicting a morphological blastocyst rating scheme, and collected clinical parameters are provided. The presented dataset is intended to be used to train deep learning models on static morphological images to predict Gardner's criteria and clinical outcomes such as live birth. A benchmark of human expert's performance in annotating Gardner criteria is provided.
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Embryology ; Computational science
Publicat a: Scientific data, Vol. 10 (may 2023) , ISSN 2052-4463

DOI: 10.1038/s41597-023-02182-3
PMID: 37169791


8 p, 1.1 MB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2024-07-06, darrera modificació el 2025-04-12



   Favorit i Compartir