Google Scholar: citations
Electronic Spin Alignment within Homologous NiS2/NiSe2 Heterostructures to Promote Sulfur Redox Kinetics in Lithium-Sulfur Batteries
Huang, Chen (Universitat de Barcelona. Departament de Química)
Yu, Jing (Institut Català de Nanociència i Nanotecnologia)
Zhang, Chao Yue (Lanzhou University)
Cui, Zhibiao (South China Normal University)
Chen, Jiakun (South China Normal University)
Lai, Wei-Hong (University of Wollongong)
Lei, Yao-Jie (University of Wollongong)
Nan, Bingfei (Institut de Recerca en Energia de Catalunya)
Lu, Xuan (Institut de Recerca en Energia de Catalunya)
He, Ren (Institut de Recerca en Energia de Catalunya)
Gong, Li (Universitat de Barcelona. Departament de Química)
Li, Junshan (Chengdu University)
Li, Canhuang (Universitat de Barcelona. Departament de Química)
Qi, Xuede (Chongqing University of Technology)
Xue, Qian (Chongqing University of Technology)
Zhou, Jin Yuan (Lanzhou University)
Qi, Xueqiang (Chongqing University of Technology)
Balcells Argemí, Lluís (Institut de Ciència de Materials de Barcelona)
Arbiol i Cobos, Jordi (Institut Català de Nanociència i Nanotecnologia)
Cabot i Codina, Andreu (Institut de Recerca en Energia de Catalunya)

Date: 2024
Abstract: The catalytic activation of the Li-S reaction is fundamental to maximize the capacity and stability of Li-S batteries (LSBs). Current research on Li-S catalysts mainly focuses on optimizing the energy levels to promote adsorption and catalytic conversion, while frequently overlooking the electronic spin state influence on charge transfer and orbital interactions. Here, hollow NiS/NiSe heterostructures encapsulated in a nitrogen-doped carbon matrix (NiS/NiSe@NC) are synthesized and used as a catalytic additive in sulfur cathodes. The NiS/NiSe heterostructure promotes the spin splitting of the 3d orbital, driving the Ni transformation from low to high spin. This high spin configuration raises the electronic energy level and activates the electronic state. This accelerates the charge transfer and optimizes the adsorption energy, lowering the reaction energy barrier of the polysulfides conversion. Benefiting from these characteristics, LSBs based on NiS/NiSe@NC/S cathodes exhibit high initial capacity (1458 mAh·g⁻ at 0. 1C), excellent rate capability (572 mAh·g⁻ at 5C), and stable cycling with an average capacity decay rate of only 0. 025% per cycle at 1C during 500 cycles. Even at high sulfur loadings (6. 2 mg·cm⁻), high initial capacities of 1173 mAh·g⁻ (7. 27 mAh·cm⁻) are measured at 0. 1C, and 1058 mAh·g⁻ is retained after 300 cycles.
Grants: Agencia Estatal de Investigación PID2022-136883OB-C22
Agencia Estatal de Investigación PCI2022-132985
Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-01581
Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00457
Ministerio de Ciencia, Innovación y Universidades SEV-2017-0706
European Commission 823717
Ministerio de Ciencia e Innovación CEX2019-000917-S
Agencia Estatal de Investigación PID2021-128410OB-I00
Rights: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Language: Anglès
Document: Article ; recerca ; Versió sotmesa a revisió
Subject: Hollow particle ; Homologous heterostructure ; Lithium-sulfur battery ; Lithium polysulfides ; Nickel selenide ; Nickel sulfide ; Spin state
Published in: Advanced materials, Vol. 36, Issue 25 (June 2024) , art. 2400810, ISSN 1521-4095

DOI: 10.1002/adma.202400810


Preprint
32 p, 4.3 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Catalan Institute of Nanoscience and Nanotechnology (ICN2)
Articles > Research articles
Articles > Published articles

 Record created 2024-10-16, last modified 2025-12-05



   Favorit i Compartir