![]() |
|||||||||||||||
![]() |
Cerca | Lliura | Ajuda | Servei de Biblioteques | Sobre el DDD | Català English Español |
Pàgina inicial > Llibres i col·leccions > Capítols de llibres > Convolutional neural networks can be deceived by visual illusions |
Data: | 2019 |
Descripció: | 9 pàg. |
Resum: | Visual illusions teach us that what we see is not always what is represented in the physical world. Their special nature make them a fascinating tool to test and validate any new vision model proposed. In general, current vision models are based on the concatenation of linear and non-linear operations. The similarity of this structure with the operations present in Convolutional Neural Networks (CNNs) has motivated us to study if CNNs trained for low-level visual tasks are deceived by visual illusions. In particular, we show that CNNs trained for image denoising, image deblurring, and computational color constancy are able to replicate the human response to visual illusions, and that the extent of this replication varies with respect to variation in architecture and spatial pattern size. These results suggest that in order to obtain CNNs that better replicate human behaviour, we may need to start aiming for them to better replicate visual illusions. |
Ajuts: | European Commission 761544 European Commission 780470 Ministerio de Economía y Competitividad TIN2015-71537-P |
Drets: | Aquest material està protegit per drets d’autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d’autor i drets afins d'aplicació al vostre cas. Per a d’altres usos heu d’obtenir permís del(s) titular(s) de drets. |
Llengua: | Anglès |
Document: | Capítol de llibre ; recerca ; Versió acceptada per publicar |
Matèria: | Computer vision theory ; Deep learning ; Low-level vision ; Representation learning |
Publicat a: | 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA, June 2019, p. 12301-12309, ISSN 1063-6919, ISBN 978-1-7281-3293-8 |
Postprint 16 p, 4.1 MB |