| Home > Articles > Published articles > Extrapolation of solvability of the regularity and the Poisson regularity problems in rough domains |
| Date: | 2025 |
| Abstract: | Let Ω⊂R, n≥2, be an open set satisfying the corkscrew condition with n-Ahlfors regular boundary ∂Ω, but without any connectivity assumption. We study the connection between solvability of the regularity problem for divergence form elliptic operators with boundary data in the Hajłasz-Sobolev space M(∂Ω) and the weak-A property of the associated elliptic measure. In particular, we show that solvability of the regularity problem in M(∂Ω) is equivalent to the solvability of the regularity problem in M(∂Ω) for some p>1. We also prove analogous extrapolation results for the Poisson regularity problem defined on tent spaces. Moreover, under the hypothesis that ∂Ω supports a weak (1,1)-Poincaré inequality, we show that the solvability of the regularity problem in the Hajłasz-Sobolev space M(∂Ω) is equivalent to a stronger solvability in a Hardy-Sobolev space of tangential derivatives. |
| Grants: | Agencia Estatal de Investigación PID2020-118986GB-I00 European Commission 101018680 Agencia Estatal de Investigación PID2020-114167GB-I00 Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00071 Ministerio de Ciencia e Innovación CEX2020-001084-M |
| Note: | Altres ajuts: acords transformatius de la UAB |
| Rights: | Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió publicada |
| Subject: | Second order elliptic equations ; Boundary value problems ; Atomic decomposition ; Hajłasz-Sobolev spaces |
| Published in: | Journal of functional analysiss, Vol. 288, Issue 1 (january 2025) , art. 110672, ISSN 1096-0783 |
61 p, 866.7 KB |