Google Scholar: citas
The Jerk Dynamics of Lorenz Model
Ginoux, Jean-Marc (Centre National de la Recherche Scientifique. Aix Marseille University. Université de Toulon)
Meucci, Riccardo (Consiglio Nazionale Delle Ricerche. Istituto Nazionale Di Ottica)
Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Sprott, Julien Clinton (University of Wisconsin)

Publicación: Springer Cham, 2024
Resumen: The Lorenz model is widely considered as the first dynamical system exhibiting a chaotic attractor, the shape of which is the famous butterfly. This similarity led Lorenz to name the sensitivity to initial conditions inherent to such chaotic systems the butterfly effect, making its model a paradigm of chaos. Nearly 30 years ago, Stefan J. Linz presented in a very interesting paper an "exact transformation" enabling to obtain the jerk form of the Lorenz model and a nonlinear transformation "simplifying its jerky dynamics. " Unfortunately, the third-order nonlinear differential equation he finally obtained precluded any mathematical analysis and made difficult numerical investigations since it contained exponential functions. In this work, we provide in the simplest way the jerk form of the Lorenz model. Then, a stability analysis of the jerk dynamics of Lorenz model proves that fixed points and their stability, eigenvalues, Lyapunov characteristic exponents, and of course attractor shape are exactly the same as those of the original Lorenz model.
Derechos: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Lengua: Anglès
Colección: NODYCON Conference Proceedings Series
Documento: Capítol de llibre ; Versió acceptada per publicar
Publicado en: Advances in Nonlinear Dynamics, Volume III. Proceedings of the Third International Nonlinear Dynamics Conference (NODYCON 2023), 2024, p. 121-129, ISBN 978-3-031-50635-2

DOI: 10.1007/978-3-031-50635-2_12


Disponible a partir de: 2025-05-31
Postprint

El registro aparece en las colecciones:
Documentos de investigación > Documentos de los grupos de investigación de la UAB > Centros y grupos de investigación (producción científica) > Ciencias > GSD (Grupo de sistemas dinámicos)
Libros y colecciones > Capítulos de libros

 Registro creado el 2024-11-25, última modificación el 2024-12-01



   Favorit i Compartir