Google Scholar: citas
Quadratic Systems Possessing an Infinite Elliptic-Saddle or an Infinite Nilpotent Saddle
Artés Ferragud, Joan Carles (Universitat Autònoma de Barcelona. Departament de Matemàtiques)
Mota, Marcos C. (Universidade de São Paulo. Instituto de Ciências Matemáticas e de Computação)
Rezende, Alex C. (Universidade Federal de São Carlos. Departamento de Matemática)

Fecha: 2024
Resumen: This paper presents a global study of the class QES of all real quadratic polynomial differential systems possessing exactly one elemental infinite singular point and one triple infinite singular point, which is either an infinite nilpotent elliptic-saddle or a nilpotent saddle. This class can be divided into three different families, namely, QES (A) of phase portraits possessing three real finite singular points, QES (B) of phase portraits possessing one real and two complex finite singular points, and QES (C) of phase portraits possessing one real triple finite singular point. Here, we provide a comprehensive study of the geometry of these three families. Modulo the action of the affine group and time homotheties, families QES (A) and QES (B) are three-dimensional and family QES (C) is two-dimensional. We study the respective bifurcation diagrams of their closures with respect to specific normal forms, in sub-sets of real Euclidean spaces. The bifurcation diagram of family QES (A) (resp. , QES (B) and QES (C)) yields 1274 (resp. , 89 and 14) sub-sets with 91 (resp. , 27 and 12) topologically distinct phase portraits for systems in the closure QES (A) (resp. , QES (B) and QES (C)) within the representatives of QES (A) (resp. , QES (B) and QES (C)) given by a specific normal form.
Ayudas: Agencia Estatal de Investigación PID2022-136613NB-I00
Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00113
Derechos: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Lengua: Anglès
Documento: Article ; recerca ; Versió acceptada per publicar
Materia: Quadratic differential system ; Infinite elliptic-saddle ; Infinite nilpotent saddle ; Bifurcation diagram ; Phase portrait ; Algebraic invariant
Publicado en: International journal of bifurcation and chaos in applied sciences and engineering, Vol. 34, Issue 11 (September 2024) , art. 2430023, ISSN 1793-6551

DOI: 10.1142/S0218127424300234


Postprint
45 p, 955.6 KB

El registro aparece en las colecciones:
Documentos de investigación > Documentos de los grupos de investigación de la UAB > Centros y grupos de investigación (producción científica) > Ciencias > GSD (Grupo de sistemas dinámicos)
Artículos > Artículos de investigación
Artículos > Artículos publicados

 Registro creado el 2025-02-07, última modificación el 2025-10-11



   Favorit i Compartir