|
|
|||||||||||||||
|
Buscar | Enviar | Ayuda | Servicio de Bibliotecas | Sobre el DDD | Català English Español | |||||||||
| Página principal > Artículos > Artículos publicados > The matching of two Markus-Yamabe piecewise smooth systems in the plane |
| Fecha: | 2025 |
| Resumen: | A Markus-Yamabe vector field is a smooth vector field in Rn having only one equilibrium point and such that the spectrum of its Jacobian matrix at any point of Rn is on the left of the imaginary axis in the complex plane. A vector field is globally asymptotically stable if it has a globally asymptotically stable equilibrium point p: all the orbits tend to p in forward time. One of the great results of the Qualitative Theory of Differential Equations establishes that a planar Markus-Yamabe vector field is globally asymptotically stable, but a Markus-Yamabe vector field defined in Rn, n⩾3, does not have in general this property. We prove that planar crossing piecewise smooth vector fields defined in two zones formed by two Markus-Yamabe vector fields sharing the same equilibrium point located on the separation straight line are not necessarily globally asymptotically stable. |
| Ayudas: | Agencia Estatal de Investigación PID2022-136613NB-I00 European Commission 777911 Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00113 |
| Derechos: | Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. |
| Lengua: | Anglès |
| Documento: | Article ; recerca ; Versió acceptada per publicar |
| Materia: | Piecewise differential system ; Global asymptotic stability ; Limit cycle |
| Publicado en: | Nonlinear Analysis: Real World Applications, Vol. 82 (April 2025) , art. 104254, ISSN 1468-1218 |
Disponible a partir de: 2027-04-30 Postprint |