Google Scholar: cites
BioMOF@cellulose Glycerogel Scaffold with Multifold Bioactivity : Perspective in Bone Tissue Repair
Rosado, Albert (Institut de Ciència de Materials de Barcelona)
Borrás, Alejandro (Institut de Ciència de Materials de Barcelona)
Sánchez-Soto, Miguel (Universitat Politècnica de Catalunya. Departament de Ciència i Enginyeria de Materials)
Labíková, Magdaléna (University of Natural Resources and Life Sciences (Aùstria, Viena))
Hettegger, Hubert (University of Natural Resources and Life Sciences (Aùstria, Viena))
Ramírez-Jiménez, Rosa Ana (Instituto de Ciencia y Tecnología de Polímeros)
Rojo, Luís (Instituto de Ciencia y Tecnología de Polímeros)
García-Fernández, Luis (Instituto de Ciencia y Tecnología de Polímeros)
Aguilar, María Rosa (Instituto de Ciencia y Tecnología de Polímeros)
Liebner, Falk (University of Natural Resources and Life Sciences (Aùstria, Viena))
Lopez-Periago, Ana M (Institut de Ciència de Materials de Barcelona)
Ayllon, Jose Antonio (Universitat Autònoma de Barcelona. Departament de Química)
Domingo, Concepción (Institut de Ciència de Materials de Barcelona)

Data: 2024
Resum: The development of new biomaterials for musculoskeletal tissue repair is currently an important branch in biomedicine research. The approach presented here is centered around the development of a prototypic synthetic glycerogel scaffold for bone regeneration, which simultaneously features therapeutic activity. The main novelty of this work lies in the combination of an open meso and macroporous nanocrystalline cellulose (NCC)-based glycerogel with a fully biocompatible microporous bioMOF system (CaSyr-1) composed of calcium ions and syringic acid. The bioMOF framework is further impregnated with a third bioactive component, i. e. , ibuprofen (ibu), to generate a multifold bioactive system. The integrated CaSyr-1(ibu) serves as a reservoir for bioactive compounds delivery, while the NCC scaffold is the proposed matrix for cell ingrowth, proliferation and differentiation. The measured drug delivery profiles, studied in a phosphate-buffered saline solution at 310 K, indicate that the bioactive components are released concurrently with bioMOF dissolution after ca. 30 min following a pseudo-first-order kinetic model. Furthermore, according to the semi-empirical Korsmeyer-Peppas kinetic model, this release is governed by a case-II mechanism, suggesting that the molecular transport is influenced by the relaxation of the NCC matrix. Preliminary in vitro results denote that the initial high concentration of glycerol in the NCC scaffold can be toxic in direct contact with human osteoblasts (HObs). However, when the excess of glycerol is diluted in the system (after the second day of the experiment), the direct and indirect assays confirm full biocompatibility and suitability for HOb proliferation.
Ajuts: Ministerio de Ciencia e Innovación CEX2019-000917-S
Agencia Estatal de Investigación PID2020-115631GB-I00
Agencia Estatal de Investigación PID2020-114086RB-I00
Agencia Estatal de Investigación PID2019-106518RB-I00
Ministerio de Sanidad y Consumo CB06/01/0013
Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-01042
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Glycerogel ; Cellulose ; Biomof ; Composite ; Scaffold ; Tissue repair
Publicat a: Gels, Vol. 10, Issue 10 (October 2024) , art. 631, ISSN 2310-2861

DOI: 10.3390/gels10100631
PMID: 39451284


16 p, 3.8 MB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2025-02-19, darrera modificació el 2025-03-25



   Favorit i Compartir