Tailoring iron hexadecafluorophthalocyanine/GO nanocomposite separators for polysulfide adsorption and enabling fast electrochemical kinetics of Li-S batteries
Xu, Zhanwei 
(Shaanxi University of Science and Technology. School of Materials Science and Engineering)
Li, Liang (Shaanxi University of Science and Technology. School of Materials Science and Engineering)
Chen, Siyu 
(Institut Català de Nanociència i Nanotecnologia)
Niu, Han (Shaanxi University of Science and Technology. School of Materials Science and Engineering)
Zhang, Ying (Shaanxi University of Science and Technology. School of Materials Science and Engineering)
Li, Zhi (National Research Council of Canada. National Institute for Nanotechnology)
Li, Jiayin
(Shaanxi University of Science and Technology. School of Materials Science and Engineering)
Shen, Xuetao
(Shaanxi University of Science and Technology. School of Materials Science and Engineering)
Data: |
2024 |
Resum: |
The cycling stability of lithium-sulfur batteries is significantly compromised by the shuttle effect. Herein, we employed a preformed process to successfully load spherical nanoparticles of Iron hexadecafluorophthalocyanine (FePcF16) with sizes between 10 and 20 nm onto oxidized graphene sheets. The FePcF16 spherical particles with lithium and sulfur-affinitive sites maximally expose catalytically active sites, facilitating effective adsorption and catalysis of polysulfides (LiPSs). Density-functional theory (DFT) calculations suggest that the electron-rich fluorine substituents enhance the conjugation effect of FePcF16, facilitating electronic communication between the catalyst and graphene oxide (GO), achieving precise modulation of the electronic structure of Fe-N4 active centers. The electrochemical analysis demonstrates that the nanostructured and Fe-N4 site-containing FePcF16 integrated with the robust two-dimensional graphene structure synergistically facilitates both redox reactions and lithium affinity effects. Consequently, in extended cycling tests at 2 C, the initial discharge-specific capacity reached 857. 7 mAh g−1. After 500 cycles, the capacity remained at 737. 7 mAh g−1, with a minimal capacity decay rate of only 0. 028 % per cycle. |
Drets: |
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades.  |
Llengua: |
Anglès |
Document: |
Article ; recerca ; Versió acceptada per publicar |
Matèria: |
Iron hexadecafluorophthalocyanine ;
Graphene oxide ;
Molecular catalysis ;
Shuttle effect ;
Lithium sulfur batteries |
Publicat a: |
Journal of alloys and compounds, Vol. 1008 (December 2024) , art. 176687, ISSN 0925-8388 |
DOI: 10.1016/j.jallcom.2024.176687
Disponible a partir de: 2026-12-31
Postprint
|
El registre apareix a les col·leccions:
Documents de recerca >
Documents dels grups de recerca de la UAB >
Centres i grups de recerca (producció científica) >
Ciències >
Institut Català de Nanociència i Nanotecnologia (ICN2)Articles >
Articles de recercaArticles >
Articles publicats
Registre creat el 2025-03-25, darrera modificació el 2025-04-22