| Home > Articles > Published articles > AI-Driven Battery-Free Wireless Sensing of Hazardous Liquid Spills via a Frequency-Selective Surface in a Monostatic Antenna Configuration |
| Date: | 2025 |
| Abstract: | The detection of spills is paramount in safeguarding safety and mitigating environmental risks in sensitive environments, including laboratories and industrial facilities. Here, the novel artificial intelligence (AI)-driven, battery-free, and wireless sensing methodology are presented for detecting liquid spills using a monostatic wireless sensing system. The system consists of a frequency-selective surface (FSS) serving as the sensor, in conjunction with a horn antenna that functions as the readout equipment. The sensing structure features a 25 × 25 resonator array with a 7-mm periodicity, operating at a resonant frequency of 7. 2 GHz. The system analyzes the renormalized S11 response to quantify variations caused by the presence of liquid on the FSS, demonstrating a high sensitivity to isopropyl alcohol (IPA) spills. Using machine learning techniques, the framework generates 512 × 512 pixel masks delineating the affected area on the FSS, achieving an F1-score exceeding 0. 85 for spill localization. This sensing methodology shows potential for integration with augmented reality (AR) systems, enabling enhanced situational awareness and real-time spill localization. Future work aims to enhance the system's capability to detect more hazardous materials and accurately classify them. |
| Grants: | Agencia Estatal de Investigación PID2022-139181OB-I00 Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00192 Ministerio de Ciencia, Innovación y Universidades FPU20/05700 |
| Note: | Altres ajuts: acords transformatius de la UAB |
| Note: | Altres ajuts: Project 2024 (Grant Number: ICREA 00114) |
| Rights: | Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió publicada |
| Subject: | Artificial intelligence (AI) ; Deep learning ; Frequency-selective surface (FSS) ; Laboratory safety ; Remote monitoring ; Spill detection ; U-Net ; Wireless sensing |
| Published in: | IEEE microwave and wireless technology letters, (April 2025) , ISSN 2771-9588 |
4 p, 1.8 MB |