Enhanced bird species image recognition and classification using MobileNet and InceptionV3 transfer learning architectures
G, Sakthi Priya 
(Ramco Institute of Technology (Índia))
K, Vignesh Saravanan 
(Ramco Institute of Technology (Índia))
K, Dheetchana (Ramco Institute of Technology (Índia))
| Date: |
2025 |
| Abstract: |
The proposed study explores the application of transfer learning techniques in bird species image classification, specifically focusing on the MobileNet and InceptionV3 models. Utilizing the CUB-200-2011 dataset, the transfer learning is employed to enhance classification accuracy. The MobileNet model achieved an impressive accuracy of 74. 60%, outperforming InceptionV3, which recorded an accuracy of 64. 00%. The corresponding loss values were 0. 8685 for MobileNet and 1. 128 for InceptionV3, highlighting MobileNet's superior alignment with actual class labels. Additionally, MobileNet demonstrated a precision range of 0. 45 to 0. 93, while InceptionV3's precision ranged from 0. 65 to 0. 81. The F1-scores revealed MobileNet's performance ranged from 0. 40 to 0. 91, in contrast to InceptionV3's lower F1-scores, indicating a more stable but less effective classification ability. These findings underscore the potential of MobileNet as a lightweight, efficient alternative for wildlife image classification tasks, making it particularly suitable for deployment in resource-constrained environments. The developed user interface allows for seamless interaction, enabling users to upload images and receive immediate classification results, further demonstrating the practical application of these models in conservation and biodiversity preservation efforts. |
| Rights: |
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades.  |
| Language: |
Anglès |
| Document: |
Article ; recerca ; Versió publicada |
| Published in: |
ELCVIA. Electronic letters on computer vision and image analysis, Vol. 24 Núm. 1 (2025) , p. 118-133 (Regular Issue) , ISSN 1577-5097 |
Adreça original: https://elcvia.cvc.uab.cat/article/view/2020
Adreça alternativa: https://raco.cat/index.php/ELCVIA/article/view/980000001033
DOI: 10.5565/rev/elcvia.2020
The record appears in these collections:
Articles >
Published articles >
ELCVIAArticles >
Research articles
Record created 2025-05-22, last modified 2025-11-14