Web of Science: 0 citations, Scopus: 0 citations, Google Scholar: citations,
Multimodal deep learning for predicting unsuccessful recanalization in refractory large vessel occlusion
González Riveros, Jesus David (Universitat Autònoma de Barcelona)
Canals, Pere (Hospital Universitari Vall d'Hebron)
Rodrigo-Gisbert, Marc (Hospital Universitari Vall d'Hebron)
Mayol, Jordi (Hospital Universitari Vall d'Hebron)
García-Tornel, Álvaro (Hospital Universitari Vall d'Hebron)
Ribó, Marc (Hospital Universitari Vall d'Hebron)

Date: 2025
Abstract: Purpose: This study explores a multi-modal deep learning approach that integrates pre-intervention neuroimaging and clinical data to predict endovascular therapy (EVT) outcomes in acute ischemic stroke patients. To this end, consecutive stroke patients undergoing EVT were included in the study, including patients with suspected Intracranial Atherosclerosis-related Large Vessel Occlusion ICAD-LVO and other refractory occlusions. Methods: A retrospective, single-center cohort of patients with anterior circulation LVO who underwent EVT between 2017-2023 was analyzed. Refractory LVO (rLVO) defined class, comprised patients who presented any of the following: final angiographic stenosis > 50 %, unsuccessful recanalization (eTICI 0-2a) or required rescue treatments (angioplasty +/- stenting). Neuroimaging data included non-contrast CT and CTA volumes, automated vascular segmentation, and CT perfusion parameters. Clinical data included demographics, comorbidities and stroke severity. Imaging features were encoded using convolutional neural networks and fused with clinical data using a DAFT module. Data were split 80 % for training (with four-fold cross-validation) and 20 % for testing. Explainability methods were used to analyze the contribution of clinical variables and regions of interest in the images. Results: The final sample comprised 599 patients; 481 for training the model (77, 16. 0 % rLVO), and 118 for testing (16, 13. 6 % rLVO). The best model predicting rLVO using just imaging achieved an AUC of 0. 53 ± 0. 02 and F1 of 0. 19 ± 0. 05 while the proposed multimodal model achieved an AUC of 0. 70 ± 0. 02 and F1 of 0. 39 ± 0. 02 in testing. Conclusion: Combining vascular segmentation, clinical variables, and imaging data improved prediction performance over single-source models. This approach offers an early alert to procedural complexity, potentially guiding more tailored, timely intervention strategies in the EVT workflow.
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Acute ischemic stroke ; Intracranial atherosclerosis disease ; Artificial intelligence ; Multimodal deep learning ; Explainable AI
Published in: European journal of radiology, Vol. 190 (September 2025) , ISSN 1872-7727

DOI: 10.1016/j.ejrad.2025.112254


10 p, 7.5 MB

The record appears in these collections:
Articles > Research articles
Articles > Published articles

 Record created 2025-06-23, last modified 2025-07-09



   Favorit i Compartir