Multi-institutional generalizability of a plan complexity machine learning model for predicting pre-treatment quality assurance results in radiotherapy
Claessens, M. (University of Antwerp)
De Kerf, G. (Iridium Netwerk)
Vanreusel, V. (Research in Dosimetric Applications (RDA). SCK CEN)
Mollaert, I. (Iridium Netwerk)
Hernandez, V. (Hospital Universitari Sant Joan de Reus (Tarragona))
Saez, Jordi 
(Hospital Clínic i Provincial de Barcelona)
Jornet, Nuria
(Institut de Recerca Sant Pau)
Verellen, Dirk
(University of Antwerp)
Universitat Autònoma de Barcelona
| Fecha: |
2024 |
| Resumen: |
Background and purpose: Treatment plans in radiotherapy are subject to measurement-based pre-treatment verifications. In this study, plan complexity metrics (PCMs) were calculated per beam and used as input features to develop a predictive model. The aim of this study was to determine the robustness against differences in machine type and institutional-specific quality assurance (QA). Material and methods: A number of 567 beams were collected, where 477 passed and 90 failed the pre-treatment QA. Treatment plans of different anatomical regions were included. One type of linear accelerator was represented. For all beams, 16 PCMs were calculated. A random forest classifier was trained to distinct between acceptable and non-acceptable beams. The model was validated on other datasets to investigate its robustness. Firstly, plans for another machine type from the same institution were evaluated. Secondly, an inter-institutional validation was conducted on three datasets from different centres with their associated QA. Results: Intra-institutionally, the PCMs beam modulation, mean MLC gap, Q1 gap, and Modulation Complexity Score were the most informative to detect failing beams. Eighty-tree percent of the failed beams (15/18) were detected correctly. The model could not detect over-modulated beams of another machine type. Inter-institutionally, the model performance reached higher accuracy for centres with comparable equipment both for treatment and QA as the local institute. Conclusions: The study demonstrates that the robustness decreases when major differences appear in the QA platform or in planning strategies, but that it is feasible to extrapolate institutional-specific trained models between centres with similar clinical practice. Predictive models should be developed for each machine type. |
| Derechos: |
Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades.  |
| Lengua: |
Anglès |
| Documento: |
Article ; recerca ; Versió publicada |
| Materia: |
Machine learning ;
Multi-institutional validation ;
Plan complexity ;
Quality assurance ;
Radiation therapy ;
VMAT |
| Publicado en: |
Physics and Imaging in Radiation Oncology, Vol. 29 (january 2024) , p. 100525, ISSN 2405-6316 |
DOI: 10.1016/j.phro.2023.100525
PMID: 38204910
El registro aparece en las colecciones:
Documentos de investigación >
Documentos de los grupos de investigación de la UAB >
Centros y grupos de investigación (producción científica) >
Ciencias de la salud y biociencias >
Institut de Recerca Sant PauArtículos >
Artículos de investigaciónArtículos >
Artículos publicados
Registro creado el 2025-06-26, última modificación el 2025-09-09