Google Scholar: citations
The LambdaGap Framework for Precision-Oriented Ranking
Adàlia, Ramon (Universitat Autònoma de Barcelona. Departament d'Arquitectura de Computadors i Sistemes Operatius)
Sanjuan, Gemma (Universitat Autònoma de Barcelona. Departament d'Arquitectura de Computadors i Sistemes Operatius)
Margalef, Tomàs (Universitat Autònoma de Barcelona. Departament d'Arquitectura de Computadors i Sistemes Operatius)
Zamora, Ismael (Lead Molecular Design, S.L.)

Date: 2025
Abstract: LambdaRank has proven effective for optimizing information retrieval metrics such as Normalized Discounted Cumulative Gain (NDCG). However, its application to Precision at document k (P@k) poses significant challenges because of the metric's unique definition, which heavily restricts the number of effective training document pairs. This limitation diminishes the learning signal for relevant documents beyond the top k, potentially resulting in suboptimal performance. To overcome this, we propose LambdaGap, a ranking algorithm inspired by LambdaRank specifically tailored for optimizing P@k. LambdaGap replaces the pairwise weighting scheme in LambdaRank by one where pairs of documents within k positions in the ranking are masked out. We establish a theoretical link between LambdaGap and P@k by identifying the implicit metric optimized by the model. Furthermore, we introduce a new metric, Average Relevance Position beyond document k, which can be used in conjunction with LambdaRank to indirectly optimize for P@k. Our extensive experiments on publicly available datasets demonstrate the effectiveness of the proposed methods, yielding statistically significant improvements in P@k performance and highlighting their potential for more efficient training.
Grants: Generalitat de Catalunya 2023-DI-00006
Note: Altres ajuts: acords transformatius de la UAB
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Learning to Rank ; LambdaRank ; Ranking Metric Optimization
Published in: ACM Transactions on Information Systems, Vol. 43, Issue 4 (July 2025) , art. 97, ISSN 1558-2868

DOI: 10.1145/3733235


39 p, 601.4 KB

The record appears in these collections:
Articles > Research articles
Articles > Published articles

 Record created 2025-07-18, last modified 2025-12-18



   Favorit i Compartir