Web of Science: 1 cites, Scopus: 1 cites, Google Scholar: cites
Physiological parameters to support attention deficit hyperactivity disorder diagnosis in children : a multiparametric approach
Castro Ribeiro, Thaís (Universitat Autònoma de Barcelona. Departament de Microelectrònica i Sistemes Electrònics)
García Pagès, Esther (Universitat Autònoma de Barcelona. Departament de Microelectrònica i Sistemes Electrònics)
Huguet, Anna (Institut de Recerca Sant Joan de Déu)
Alda, Jose A. (Hospital Sant Joan de Déu (Esplugues de Llobregat, Catalunya))
Badiella Busquets, Llorenç (Universitat Autònoma de Barcelona. Servei d'Estadística Aplicada (SEA))
Aguiló Llobet, Jordi (Universitat Autònoma de Barcelona. Departament de Microelectrònica i Sistemes Electrònics)

Data: 2024
Resum: Attention deficit hyperactivity disorder (ADHD) is a high-prevalent neurodevelopmental disorder characterized by inattention, impulsivity, and hyperactivity, frequently co-occurring with other psychiatric and medical conditions. Current diagnosis is time-consuming and often delays effective treatment; to date, no valid biomarker has been identified to facilitate this process. Research has linked the core symptoms of ADHD to autonomic dysfunction resulting from impaired arousal modulation, which contributes to physiological abnormalities that may serve as useful biomarkers for the disorder. While recent research has explored alternative objective assessment tools, few have specifically focused on studying ADHD autonomic dysregulation through physiological parameters. This study aimed to design a multiparametric physiological model to support ADHD diagnosis. In this observational study we non-invasively analyzed heart rate variability (HRV), electrodermal activity (EDA), respiration, and skin temperature parameters of 69 treatment-naïve ADHD children and 29 typically developing (TD) controls (7-12 years old). To identify the most relevant parameters to discriminate ADHD children from controls, we explored the physiological behavior at baseline and during a sustained attention task and applied a logistic regression procedure. ADHD children showed increased HRV and lower EDA at baseline. The stress-inducing task elicits higher reactivity for EDA, pulse arrival time (PAT), and respiratory frequency in the ADHD group. The final classification model included 4 physiological parameters and was adjusted by gender and age. A good capacity to discriminate between ADHD children and TD controls was obtained, with an accuracy rate of 85. 5% and an AUC of 0. 95. Our findings suggest that a multiparametric physiological model constitutes an accurate tool that can be easily employed to support ADHD diagnosis in clinical practice. The discrimination capacity of the model may be analyzed in larger samples to confirm the possibility of generalization.
Ajuts: Agencia Estatal de Investigación TED2021-131106B-I00
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: ADHD (attention deficit and hyperactivity disorder) ; ADHD classification ; Physiological parameters ; Multiparametric models ; HRV (heart rate variability) ; EDA (electrodermal activity)
Publicat a: Frontiers in psychiatry, Vol. 15 (November 2024) , art. 1430797, ISSN 1664-0640

DOI: 10.3389/fpsyt.2024.1430797
PMID: 39575190


14 p, 4.9 MB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2025-09-23, darrera modificació el 2026-01-20



   Favorit i Compartir