Google Scholar: cites
DAE-MLP based feature extraction for hyperspectral image classification of Saint Clair river
Attallah, Youcef (University of Science and Technology of Oran (Algèria))
Zigh, Ehlem (University of Science and Technology of Oran (Algèria))
Adda, Ali Pacha (University of Science and Technology of Oran (Algèria))

Data: 2025
Resum: Hyperspectral remote sensing has emerged as a powerful tool for vegetation classification due to its ability to capture detailed spectral information. This study introduces a novel methodology for vegetation classification using exclusively hyperspectral imagery. The proposed approach comprises atmospheric correction using the FLAASH algorithm, followed by dimensionality reduction using PCA and segmentation through the ROI selection and the Spectral Angle Mapper (SAM) module. Subsequently, a deep autoencoder is employed for feature extraction, paving the way for classification using the Multi-Layer Perceptron (MLP) algorithm. The effectiveness of this methodology is evaluated using a hyperspectral image of the Saint Clair River, successfully classifying the image into six main classes: water 1, water 2, grass, tree, reed, corn, and an 'unclassified' category encompassing concrete, roads, bricks, wood, and more. Our findings demonstrate the efficacy of this approach in accurately classifying and mapping vegetation in river ecosystems, offering a promising solution in the face of limited hyperspectral datasets.
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Hyperspectral remote sensing ; FLAASH ; PCA ; SAM ; Multi-layer perceptron (mlp) ; Saint clair river
Publicat a: ELCVIA. Electronic letters on computer vision and image analysis, Vol. 24 Núm. 2 (2025) , p. 28-48 (Regular Issue) , ISSN 1577-5097

Adreça original: https://elcvia.cvc.uab.cat/article/view/1827
Adreça alternativa: https://raco.cat/index.php/ELCVIA/article/view/980000001041
DOI: 10.5565/rev/elcvia.1827


21 p, 8.6 MB

El registre apareix a les col·leccions:
Articles > Articles publicats > ELCVIA
Articles > Articles de recerca

 Registre creat el 2025-10-19, darrera modificació el 2025-11-21



   Favorit i Compartir