Afforestation-driven soil organic carbon stabilization in a hyper-arid desert : nonlinear dynamics and microbial drivers across a 22-year chronosequenc
Dong, Xinping (Chinese Academy of Sciences. Xinjiang Institute of Ecology and Geography)
Tariq, Akash 
(Centre de Recerca Ecològica i d'Aplicacions Forestals)
Graciano, Corina (Universidad Nacional de La Plata. Instituto de Fisiología Vegetal)
Zhang, Zhihao (Chinese Academy of Sciences)
Gao, Yanju (Chinese Academy of Sciences. Xinjiang Institute of Ecology and Geography)
Keyimu, Maierdang (Chinese Academy of Sciences. Xinjiang Institute of Ecology and Geography)
Cong, Mengfei (Chinese Academy of Sciences. Xinjiang Institute of Ecology and Geography)
Zhao, Guangxing (Chinese Academy of Sciences. Xinjiang Institute of Ecology and Geography)
Yan, Jingming (Chinese Academy of Sciences. Xinjiang Institute of Ecology and Geography)
Wang, Weiqi (Fujian Normal University)
Sardans i Galobart, Jordi
(Centre de Recerca Ecològica i d'Aplicacions Forestals)
Peñuelas, Josep
(Centre de Recerca Ecològica i d'Aplicacions Forestals)
Zeng, Fanjiang (University of Chinese Academy of Sciences)
| Date: |
2025 |
| Abstract: |
Desertification and soil carbon loss threaten arid ecosystem sustainability, yet the long-term stability of soil organic carbon (SOC) following afforestation in hyperarid regions remains poorly understood. Here, we investigated SOC dynamics across a 22-year Populus alba chronosequence at the Taklimakan Desert edge, combining physical fractionation particulate organic carbon (POC) and mineral-associated organic carbon (MAOC) with microbial phospholipid fatty acid (PLFAs) and enzymatic analyses. Afforestation significantly increased SOC content by 50. 97 %-108. 05 %, with MAOC surging 100. 94 %-160. 59 % after 22 years (P < 0. 01). SOC stability (MAOC/POC ratio) peaked at 12 years before declining. Random forest modeling identified total nitrogen (TN) and available phosphorus (AP) as key drivers. Meanwhile, microbial metabolic limitations, assessing by the stoichiometric of soil extracellular enzymes, shifted from phosphorus (P) limitation to carbon-phosphorus (C-P) colimitation suppressed decomposition activity, enhancing SOC stability. This study provides the quantification of nonlinear SOC stability trajectories in hyperarid plantations, offering critical insights for optimizing afforestation age to enhance the stability of SOC. Our findings advance mechanistic understanding of SOC persistence in water-limited ecosystems and directly inform desertification control policies under climate change scenarios. |
| Rights: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Language: |
Anglès |
| Document: |
Article ; recerca ; Versió sotmesa a revisió |
| Subject: |
Soil organic carbon fraction ;
Microbial metabolic limitations ;
Plantation ;
Taklimakan desert |
| Published in: |
Environmental Research, Vol. 282 (October 2025) , art. 121989, ISSN 0013-9351 |
DOI: 10.1016/j.envres.2025.121989
The record appears in these collections:
Research literature >
UAB research groups literature >
Research Centres and Groups (research output) >
Experimental sciences >
CREAF (Centre de Recerca Ecològica i d'Aplicacions Forestals)Articles >
Research articlesArticles >
Published articles
Record created 2025-11-04, last modified 2025-11-23