Google Scholar: cites
A reversible data hiding techniques for improved embedding capacity using image interpolation
D., Shahi (Noorul Islam Center for Higher Education (Índia))
Kumar R. S., Vinod (Noorul Islam Center for Higher Education (Índia))
A. R., Bushara (KMEA Engineering College (Índia))

Data: 2025
Resum: High capacity steganography is still challenging today in the field of information security. The demand for the exact retrieval of the cover media from stego-image after the extraction of secret data is also increasing. Using reversible information hiding techniques, the cover image can be recovered at the time of extraction of secret messages. Two techniques are proposed in this paper. In the first technique, the image is interpolated using a new interpolation technique and the second technique uses a High Capacity Reversible Steganography using Multi-layer Embedding (CRS) method for image interpolation. In both the techniques, the secret data are embedded in the cover image by Exclusive OR (XOR) operation. The proposed techniques give high embedding capacity and preserve image quality. The experimental results show that the proposed techniques offer better results over the existing techniques.
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Publicat a: ELCVIA. Electronic letters on computer vision and image analysis, Vol. 24 Núm. 2 (2025) , p. 104-122 (Regular Issue) , ISSN 1577-5097

Adreça original: https://elcvia.cvc.uab.cat/article/view/1909
DOI: 10.5565/rev/elcvia.1909


19 p, 4.0 MB

El registre apareix a les col·leccions:
Articles > Articles publicats > ELCVIA
Articles > Articles de recerca

 Registre creat el 2025-11-21, darrera modificació el 2025-11-23



   Favorit i Compartir