|
|
|||||||||||||||
|
Cerca | Lliura | Ajuda | Servei de Biblioteques | Sobre el DDD | Català English Español | |||||||||
| Pàgina inicial > Articles > Articles publicats > Spin-modulated catalysis in sulfur cathodes for improved performance in lithium-sulfur batteries |
| Data: | 2025 |
| Resum: | The rapid growth of electric vehicles and the increasing integration of renewable energy into the grid have heightened the demand for high-capacity energy storage systems based on abundant, low-cost materials. To address the limitations of conventional ion-intercalation batteries, conversion-type electrodes have gained significant attention, as their energy storage relies on chemical redox reactions often requiring activation or acceleration via electrocatalysis. Recent studies reveal that electrocatalytic activity is governed not only by active-site density and charge-carrier availability, but also by the spin states of electrons within the catalyst. Consequently, understanding the role of electronic spin states in battery performance, and how to manipulate them to enhance energy storage, has become a critical research frontier. This review provides a comprehensive overview of current strategies to modulate spin states in electrocatalysts for conversion-type cathodes. While external magnetic fields remain the primary method to probe and control electron spin, more practical and scalable approaches, such as atomic coordination engineering and surface spin filters, are emerging. Particular focus is given to sulfur cathodes, which offer exceptional theoretical energy density and capacity but depend heavily on catalytic hosts to enable efficient sulfur redox reactions. The review also surveys experimental techniques for probing spin states and theoretical approaches for modeling spin-related phenomena at the atomic scale. Finally, it highlights emerging research directions, underscoring the potential of spin-state modulation as a transformative strategy for next-generation energy storage technologies. |
| Ajuts: | Agencia Estatal de Investigación PID2022-136883OB-C22 Agencia Estatal de Investigación PCI2022-132985 Agencia Estatal de Investigación PID2023-149158OB-C43 Agencia Estatal de Investigación CEX2021-001214-S Generalitat de Catalunya 2021/SGR-01581 Generalitat de Catalunya 2023/CLIMA-00022 Generalitat de Catalunya 2021/SGR-00457 |
| Nota: | Altres ajuts: authors acknowledge the Advanced Materials programme (Project In-CAEM) by the Spanish Government with funding from European Union NextGenerationEU (PRTR-C17.I1) and by Generalitat de Catalunya. ICN2 is funded by the CERCA Programme / Generalitat de Catalunya. |
| Drets: | Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. |
| Llengua: | Anglès |
| Document: | Article de revisió ; recerca ; Versió publicada |
| Matèria: | Catalyse ; Energy ; High capacity ; High-capacity ; Integration of renewable energies ; Lithium/sulfur batteries ; Performance ; Rapid growth ; Spin state ; Sulfur cathodes |
| Publicat a: | Communications Materials, Vol. 6 (November 2025) , art. 256, ISSN 2662-4443 |
33 p, 11.0 MB |