The circulation of bycicles in Barcelona, street by street
Honey-Rosés, Jordi
Liebscht, Luca
Castilla Carretero, Gerard
Arenas, Adrià
Ballart, Helene
Chaves, Laura
Miah, Mintu
Nello-Deakin, Samuel
Simon Mas, Gemma
Treviño, Carmen Georgina
Udina, Frederic
Reyes, Patricio

Additional title: Bicycle traffic in Barcelona, street by street
Imprint: Barcelona : Institut de Ciència i Tecnologia Ambientals 2025
Description: 31 pàg.
Abstract: This report presents a first estimation of the volume of bicycles and scooters moving through Barcelona, street by street. Using advanced modeling techniques, we estimate the Average Annual Daily Bicycle Traffic (AADBT) at the street segment level for over 20,000 road segments. We rely on data from automatic counters managed by the city council as well as data collected by volunteers and civil society. The most accurate model, XGBoost, allows visualization of bicycle flows across the entire city and is a valuable tool for urban planning, infrastructure improvement, and road safety studies. One of the study's main achievements has been to demonstrate how citizen participation improves the quality and representativeness of the estimates: thanks to the work of 43 volunteers, it was possible to cover street typologies and areas outside the reach of automatic counters. Despite these improvements, the model still presents some overestimations, especially on streets without cycling infrastructure. Nevertheless, this beta version offers a solid foundation for future developments. This project illustrates the potential of citizen science and interdisciplinary collaboration to advance towards more sustainable, equitable, and evidencebased mobility in Barcelona.
Rights: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Language: Anglès
Document: Informe
Subject: Bicycle ; Traffic model ; Citizen science ; Machine learning ; SDG 11 - Sustainable Cities and Communities



31 p, 13.3 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > Institut de Ciència i Tecnologia Ambientals (ICTA)
Research literature > Studies

 Record created 2026-01-21, last modified 2026-01-21



   Favorit i Compartir