| Home > Books and collections > Book chapters > Early adaptive evaluation scheme for data-driven calibration in forest fire spread prediction |
| Imprint: | Cham (Suïssa) : Springer, 2020 |
| Description: | 14 pàg. |
| Abstract: | Forest fires severally affect many ecosystems every year, leading to large environmental damages, casualties and economic losses. Established and emerging technologies are used to help wildfire analysts determine fire behavior and spread aiming at a more accurate prediction results and efficient use of resources in fire fighting. Natural hazards simulations need to deal with data input uncertainty and their impact on prediction results, usually resorting to compute-intensive calibration techniques. In this paper, we propose a new evaluation technique capable of reducing the overall calibration time by 60% when compared to the current data-driven approaches. This is achieved by means of the proposed adaptive evaluation technique based on a periodic monitoring of the fire spread prediction error. |
| Grants: | Agencia Estatal de Investigación TIN2017-84553- C2-1-R Generalitat de Catalunya 2017/SGR-313 |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Series: | Lecture notes in computer science ; 12142 |
| Document: | Capítol de llibre ; recerca ; Versió acceptada per publicar |
| Subject: | Data driven prediction ; Data uncertainty ; Forest fires ; Urgent computing |
| Published in: | Computational Science - ICCS 2020, 2020, p. 17-30, ISBN 978-3-030-50433-5 |
Postprint 14 p, 2.7 MB |