Google Scholar: cites
Decoupling Magnetic and Electric Field Control in Magneto-Ionic Materials for Energy-Efficient Brain-Inspired Memory Devices
Martínez Armesto, Luis (Universitat Autònoma de Barcelona. Departament de Física)
Ma, Zheng (Universitat Autònoma de Barcelona. Departament de Física)
Tan, Huan (Universitat Autònoma de Barcelona. Departament de Física)
Pellicer Vilà, Eva Maria (Universitat Autònoma de Barcelona. Departament de Física)
Spasojevic, Irena (Universitat Autònoma de Barcelona. Departament de Física)
Sort Viñas, Jordi (Institut Català de Nanociència i Nanotecnologia)

Data: 2026
Resum: Magneto-ionic materials, which enable nonvolatile control of magnetism through voltage-driven ion migration, are emerging as promising candidates for neuromorphic computing. Unlike conventional memristors, these systems allow dual actuation by both electric and magnetic fields, providing a broader range of functional capabilities. The reliance on voltage rather than current significantly reduces Joule heating and enhances the energy efficiency. However, the general need for external magnetic fields to modulate the voltage-induced magnetic response remains a key limitation, undermining the full energy-saving potential of these systems. In this work, we present a magneto-ionic strategy in CoFeN that fully decouples the electric and magnetic field requirements. By taking advantage of a planar N 3- ion migration and the ferromagnetic exchange interactions between preexisting and newly generated CoFe magnetic regions, we achieve remanent-state magnetization control solely through applied voltage. The system exhibits behaviors reminiscent of neuromorphic-inspired functionalities, such as synaptic potentiation and depression, while also exhibiting a cumulative voltage-driven increase in magnetization in the absence of a magnetic field. Once the magnetic field is switched off, synaptic weight remains influenced by both the sample's magnetic and electric history. By eliminating the need for magnetic fields, our approach contributes to reduce energy consumption, offering a more efficient pathway for brain-inspired magneto-ionic devices.
Ajuts: European Commission 101054687
European Commission 101204328
Generalitat de Catalunya 2021/SGR-00651
Agencia Estatal de Investigación PID2020-116844RB-C21
Agencia Estatal de Investigación TED2021-130453B-C22
Agencia Estatal de Investigación CEX2021-001214-S
Nota: Altres ajuts: acords transformatius de la UAB
Drets: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. Creative Commons
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Energy efficiency ; Nitrogen magneto-ionics ; Exchange interactions ; Magnetization modulation ; Synaptic-like functionalities
Publicat a: ACS applied materials & interfaces, Vol. 18, Num. 1 (January 2026) , p. 1985-1994, ISSN 1944-8252

DOI: 10.1021/acsami.5c19791
PMID: 41442220


10 p, 6.1 MB

El registre apareix a les col·leccions:
Documents de recerca > Documents dels grups de recerca de la UAB > Centres i grups de recerca (producció científica) > Ciències > Institut Català de Nanociència i Nanotecnologia (ICN2)
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2026-01-20, darrera modificació el 2026-01-29



   Favorit i Compartir