Home > Articles > Published articles > Fourier restriction to convex surfaces of revolution in R3 |
Date: | 2006 |
Abstract: | If Γ is a C3 hypersurface in Rn and dσ is induced Lebesgue measure on Γ, then it is well known that a Tomas-Stein Fourier restriction estimate on Γ implies that Γ has a nowhere vanishing Gaussian curvature. In a recent paper, Carbery and Ziesler observed that if induced Lebesgue measure is replaced by affine surface area, then a Tomas-Stein restriction estimate on Γ implies that Γ satisfies the affine isoperimetric inequality. Since the only property needed for a hypersurface to satisfy the affine isoperimetric inequality is convexity, this raised the question of whether a TomasStein restriction estimate can be obtained for flat but convex hypersurfaces in Rn such as Γ(x) = (x, e−1/ $m ), m = 1, 2, . . . . We prove that this is indeed the case in dimension n = 3. |
Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
Language: | Anglès |
Document: | Article ; recerca ; Versió publicada |
Published in: | Publicacions matemàtiques, V. 50 n. 1 (2006) p. 71-85, ISSN 2014-4350 |
15 p, 178.5 KB |
The record appears in these collections:
Articles > Published articles > Publicacions matemàtiques
Articles > Research articles