Para citar este documento:
Fourier restriction to convex surfaces of revolution in R3
Abi-Khuzam, Faruk
Shayya, Bassam

Fecha: 2006
Resumen: If Γ is a C3 hypersurface in Rn and dσ is induced Lebesgue measure on Γ, then it is well known that a Tomas-Stein Fourier restriction estimate on Γ implies that Γ has a nowhere vanishing Gaussian curvature. In a recent paper, Carbery and Ziesler observed that if induced Lebesgue measure is replaced by affine surface area, then a Tomas-Stein restriction estimate on Γ implies that Γ satisfies the affine isoperimetric inequality. Since the only property needed for a hypersurface to satisfy the affine isoperimetric inequality is convexity, this raised the question of whether a TomasStein restriction estimate can be obtained for flat but convex hypersurfaces in Rn such as Γ(x) = (x, e−1/ $m ), m = 1, 2, . . . . We prove that this is indeed the case in dimension n = 3.
Derechos: Tots els drets reservats.
Lengua: Anglès.
Documento: Article ; recerca ; article ; publishedVersion
Publicado en: Publicacions Matemàtiques, V. 50 n. 1 (2006) p. 71-85, ISSN 0214-1493

Adreça original:
DOI: 10.5565/PUBLMAT_50106_04
DOI: 10.5565/38264

15 p, 178.5 KB

El registro aparece en las colecciones:
Artículos > Artículos publicados > Publicacions matemàtiques
Artículos > Artículos de investigación

 Registro creado el 2006-05-09, última modificación el 2017-10-28

   Favorit i Compartir