A preconditioning proximal Newton method for nondifferentiable convex optimization
Qi, Liqun
Chen, Xiaojun

Fecha: 1997
Resumen: We propose a proximal Newton method for solving nondifferentiable convex optimization. This method combines the generalized Newton method with Rockafellar's proximal point algorithm. At each step, the proximal point is found approximately and the regularization matrix is preconditioned to overcome inexactness of this approximation. We show that such a preconditioning is possible within some accuracy and the second-order differentiability properties of the Moreau-Yosida regularization are invariant with respect to this preconditioning. Based upon these, superlinear convergence is established under a semismoothness condition. .
Derechos: Tots els drets reservats.
Lengua: Anglès
Documento: Article ; recerca ; Versió publicada
Materia: Nondifferentiable convex optimization ; Proximal point ; Superlinear convergence ; Newton's method
Publicado en: Mathematical Programming, vol. 76 n. 3 (1997) p. 411-429, ISSN 0025-5610



19 p, 655.9 KB
 Acceso restringido a la UAB

El registro aparece en las colecciones:
Artículos > Artículos de investigación
Artículos > Artículos publicados

 Registro creado el 2006-03-13, última modificación el 2023-06-03



   Favorit i Compartir