visitant ::
identificació
|
|||||||||||||||
Cerca | Lliura | Ajuda | Servei de Biblioteques | Sobre el DDD | Català English Español |
Pàgina inicial > Articles > Articles publicats > A preconditioning proximal Newton method for nondifferentiable convex optimization |
Data: | 1997 |
Resum: | We propose a proximal Newton method for solving nondifferentiable convex optimization. This method combines the generalized Newton method with Rockafellar's proximal point algorithm. At each step, the proximal point is found approximately and the regularization matrix is preconditioned to overcome inexactness of this approximation. We show that such a preconditioning is possible within some accuracy and the second-order differentiability properties of the Moreau-Yosida regularization are invariant with respect to this preconditioning. Based upon these, superlinear convergence is established under a semismoothness condition. . |
Drets: | Tots els drets reservats. |
Llengua: | Anglès |
Document: | Article ; recerca ; Versió publicada |
Matèria: | Nondifferentiable convex optimization ; Proximal point ; Superlinear convergence ; Newton's method |
Publicat a: | Mathematical Programming, vol. 76 n. 3 (1997) p. 411-429, ISSN 0025-5610 |
19 p, 655.9 KB Accés restringit a la UAB |