Indirect inference for survival data
Turnbull, Bruce W. (Cornell University)
Jiang, Wenxin (Cornell University)

Fecha: 2003
Resumen: In this paper we describe the so-called "indirect" method of inference, originally developed from the econometric literature, and apply it to survival analyses of two data sets with repeated events. This method is often more convenient computationally than maximum likelihood estimation when handling such model complexities as random effects and measurement error, for example; and it can also serve as a basis for robust inference with less stringent assumptions on the data generating mechanism. The first data set concerns recurrence times of mammary tumors in rats and is modeled using a Poisson process model with covariates and frailties. The second data set involves times of recurrences of skin tumors in individual patients in a clinical trial. The methodology is applied in both parametric and semi-parametric regression analyses to accommodate random effects and covariate measurement error.
Derechos: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Lengua: Anglès
Documento: Article ; recerca ; Versió publicada
Materia: Estimating equations ; Frailty ; Hazard rate regression ; Indirect inference ; Measurement ; Error ; Naive estimators ; Overdispersion ; Quasi-likelihood ; Random effects ; Robustness
Publicado en: SORT : statistics and operations research transactions, Vol. 27, Núm. 1 (January-June 2003) , p. 79-94, ISSN 2013-8830

Adreça alternativa: https://raco.cat/index.php/SORT/article/view/28849


15 p, 137.4 KB

El registro aparece en las colecciones:
Artículos > Artículos publicados > SORT
Artículos > Artículos de investigación

 Registro creado el 2012-07-18, última modificación el 2024-05-25



   Favorit i Compartir