| Home > Articles > Published articles > On the nonintegrability of magnetic field lines |
| Date: | 2013 |
| Abstract: | We show that a magnetic field created by a simple planar configuration of three rectilinear wires may not be holomorphically integrable when considered as a vector field in C3. In particular the method of the proof gives an easy way of showing that the corresponding real vector field does not admit a real polynomial first integral. This is also an alternative way of contradicting the Stefanescu conjecture in the polynomial setting. |
| Note: | Agraïments: The second author is partially supported by FCT through CAMGDS, Lisbon. |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Analytic integrability ; Stefanescu's conjecture ; Magnetic field |
| Published in: | Physica D. Nonlinear phenomena, Vol. 251 (2013) , p. 60-62, ISSN 1872-8022 |
Postprint 5 p, 253.1 KB |