| Home > Articles > Published articles > Simultaneous bifurcation of limit cycles from a linear center with extra singular points |
| Date: | 2014 |
| Abstract: | The period annuli of the planar vector field x' = -yF(x, y), y' = xF(x, y), where the set {F(x, y) = 0} consists of k different isolated points, is defined by k + 1 concentric annuli. In this paper we perturb it with polynomials of degree n and we study how many limit cycles bifurcate, up to a first order analysis, from all the period annuli simultaneously in terms of k and n. Additionally, we prove that the associated Abelian integral is piecewise rational and, when k = 1, the provided upper bound is reached. Finally, the case k = 2 is also treated. |
| Grants: | Ministerio de Ciencia e Innovación MTM2008-03437 Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-410 |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Polynomial perturbation of centers ; Piecewise rational abelian integral ; Simultaneity of limit cycles from several period annuli |
| Published in: | Bulletin des Sciences Mathematiques, Vol. 138 (2014) , p. 124-138, ISSN 0007-4497 |
Postprint 15 p, 373.1 KB |