| Home > Articles > Published articles > Inverse Approach in Ordinary Differential Equations: Applications to Lagrangian and Hamiltonian Mechanics |
| Date: | 2014 |
| Abstract: | This paper is on the so called inverse problem of ordinary differential systems, i. e. the problem of determining the differential systems satisfying a set of given properties. More precisely, we characterize under very general assumptions the ordinary differential systems in RN which have a given set of either M ≤ N, or M > N partial integrals, or M < N first integrals, or M ≤ N partial and first integrals. Moreover, for such systems we determine the necessary and sufficient conditions for the existence of N − 1 independent first integrals. For the systems with M < N partial integrals we provide sufficient conditions for the existence of a first integral. We give two relevant applications of the solutions of these inverse problems to constrained Lagrangian and constrained Hamiltonian systems. Additionally we provide a particular solution of the inverse problem in dynamics, and give a generalized solution of the problem of integration of the equation of motion in the classical Suslov problem on SO(3). |
| Grants: | Ministerio de Economía y Competitividad MTM2008-03437 Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-410 |
| Note: | Agraïments: The second author was partly supported by the Spanish Ministry of Education through projects TSI2007-65406-C03-01 "E-AEGIS" and Consolider CSD2007-00004 "ARES". |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Hamiltonian Mechanics ; Inverse problems ; Lagrangian Mechanics |
| Published in: | Journal of dynamics and differential equations, Vol. 26 (2014) , p. 529-581, ISSN 1572-9222 |
Postprint 52 p, 1.0 MB |