Home > Articles > Published articles > Connectivity of Julia sets of Newton maps : |
Date: | 2018 |
Abstract: | In this paper we give a unified proof of the fact that the Julia set of Newton's method applied to a holomorphic function of the complex plane (a polynomial of degree large than 1 or an entire transcendental function) is connected. The result was recently completed by the authors' previous work, as a consequence of a more general theorem whose proof spreads among many papers, which consider separately a number of particular cases for rational and transcendental maps, and use a variety of techniques. In this note we present a unified, direct and reasonably self-contained proof which works for all situations alike. |
Grants: | Ministerio de Economía y Competitividad MTM2011-26995-C02-02 Agència de Gestió d'Ajuts Universitaris i de Recerca 2009/SGR-792 |
Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
Language: | Anglès |
Document: | Article ; recerca ; Versió acceptada per publicar |
Subject: | Connectivity ; Fatou set ; Holomorphic dynamics ; Julia set ; Newton's map ; Repelling fixed point ; Simple connectivity |
Published in: | Revista Matemática Iberoamericana, Vol. 34, issue 3 (2018) , p. 1211-1228, ISSN 0213-2230 |
Postprint 15 p, 8.6 MB |