Web of Science: 1 citations, Scopus: 1 citations, Google Scholar: citations
Nilpotent bi-center in continuous piecewise Z2-equivariant cubic polynomial Hamiltonian systems
Chen, Ting (Guangdong University of Finance and Economics. School of Statistics and Mathematics)
Li, Shimin (Guangdong University of Finance and Economics. School of Statistics and Mathematics)
Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)

Date: 2022
Abstract: One of the classical and difficult problems in the theory of planar differential systems is to classify their centers. Here we classify the global phase portraits in the Poincaré disk of the class continuous piecewise differential systems separated by one straight line and formed by two cubic Hamiltonian systems with nilpotent bi-center at (± 1, 0). The main tools for proving our results are the Poincaré compactification, the index theory, and the theory of sign lists for determining the exact number of real roots or negative real roots of a real polynomial in one variable.
Grants: Agencia Estatal de Investigación PID2019-104658GB-I00
European Commission 777911
Rights: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Language: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Subject: Nilpotent ; Bi-center ; Hamiltonian ; Phase portrait
Published in: Nonlinear Dynamics, Vol. 110, Issue 1 (September 2022) , p. 705-721, ISSN 1573-269X

DOI: 10.1007/s11071-022-07631-z


Postprint
18 p, 887.5 KB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > GSD (Dynamical systems)
Articles > Research articles
Articles > Published articles

 Record created 2023-05-15, last modified 2025-03-23



   Favorit i Compartir