Home > Articles > Published articles > Global phase portraits of the quadratic systems having a singular and irreducible invariant curve of degree 3 |
Date: | 2023 |
Abstract: | Any singular irreducible cubic curve (or simply, cubic) after an affine transformation can be written as either y2 = x3, or y2 = x2(x + 1), or y2 = x2(x - 1). We classify the phase portraits of all quadratic polynomial differential systems having the invariant cubic y2 = x2(x + 1). We prove that there are 63 different topological phase portraits for such quadratic polynomial differential systems. We control all the bifurcations among these distinct topological phase portraits. These systems have no limit cycles. Only three phase portraits have a center, 19 of these phase portraits have one polycycle, three of these phase portraits have two polycycles. The maximum number of separartices that have these phase portraits is 26 and the minimum number is nine, the maximum number of canonical regions of these phase portraits is seven and the minimum is three. |
Grants: | Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1617 European Commission 777911 Agencia Estatal de Investigación MTM2016-77278-P Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1049 Agencia Estatal de Investigación PGC2018-098676-B-I00 |
Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
Language: | Anglès |
Document: | Article ; recerca ; Versió acceptada per publicar |
Subject: | Poincaré disk ; Global phase portrait ; Singular curve ; Cubic curve ; Polycycles ; Canonical regions ; Separatrices |
Published in: | International journal of bifurcation and chaos in applied sciences and engineering, Vol. 33, Issue 1 (January 2023) , art. 2350003, ISSN 1793-6551 |
Postprint 52 p, 2.1 MB |
The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > GSD (Dynamical systems)
Articles > Research articles
Articles > Published articles