| Home > Articles > Published articles > Probability of occurrence of some planar random quasi-homogeneous vector fields |
| Date: | 2022 |
| Abstract: | The objective of this work is the study of the probability of occurrence of phase portraits in a family of planar quasi-homogeneous vector fields of quasi degree q, that is a natural extension of planar linear vector fields, which correspond to q= 1. We obtain the exact values of the corresponding probabilities in terms of a simple one-variable definite integral that only depends on q. This integral is explicitly computable in the linear case, recovering known results, and it can be expressed in terms of either complete elliptic integrals or of generalized hypergeometric functions in the non-linear one. Moreover, it appears a remarkable phenomenon when q is even: the probability to have a center is positive, in contrast with what happens in the linear case, or also when q is odd, where this probability is zero. |
| Grants: | Agencia Estatal de Investigación PID2020-118726GB-I00 Agencia Estatal de Investigación PID2019-104658GB-I00 Agència de Gestió d'Ajuts Universitaris i de Recerca 2017/SGR-1617 Agencia Estatal de Investigación CEX2020-001084-M |
| Rights: | Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió publicada |
| Subject: | Ordinary differential equations with random coefficients ; Planar quasi-homogeneous vector fields ; Critical point index ; Phase portraits |
| Published in: | Mediterranean journal of mathematics, Vol. 19, Issue 6 (December 2022) , art. 278, ISSN 1660-5454 |
16 p, 396.2 KB |