Web of Science: 1 citations, Scopus: 0 citations, Google Scholar: citations
Aberrant perineuronal nets alter spinal circuits, impair motor function, and increase plasticity
Sánchez-Ventura, Judith (Universitat Autònoma de Barcelona. Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia)
Canal Capdevila, Carla (Universitat Autònoma de Barcelona. Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia)
Hidalgo Pareja, Juan (Universitat Autònoma de Barcelona. Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia)
Penas Pérez, Clara (Universitat Autònoma de Barcelona. Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia)
Navarro, X. (Xavier) (Universitat Autònoma de Barcelona. Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia)
Torres Espín, Abel (University of California. Department of Neurological Surgery)
Fouad, K (University of Alberta. Department of Physical Therapy)
Udina i Bonet, Esther (Universitat Autònoma de Barcelona. Departament de Biologia Cel·lular, de Fisiologia i d'Immunologia)
Universitat Autònoma de Barcelona. Institut de Neurociències

Date: 2022
Description: 16 pàg.
Abstract: Perineuronal nets (PNNs) are a specialized extracellular matrix that have been extensively studied in the brain. Cortical PNNs are implicated in synaptic stabilization, plasticity inhibition, neuroprotection, and ionic buffering. However, the role of spinal PNNs, mainly found around motoneurons, is still unclear. Thus, the goal of this study is to elucidate the role of spinal PNNs on motor function and plasticity in both intact and spinal cord injured mice. We used transgenic mice lacking the cartilage link protein 1 (Crtl1 KO mice), which is implicated in PNN assembly. Crtl1 KO mice showed disorganized PNNs with an altered proportion of their components in both motor cortex and spinal cord. Behavioral and electrophysiological tests revealed motor impairments and hyperexcitability of spinal reflexes in Crtl1 KO compared to WT mice. These functional outcomes were accompanied by an increase in excitatory synapses around spinal motoneurons. Moreover, following spinal lesions of the corticospinal tract, Crtl1 KO mice showed increased contralateral sprouting compared to WT mice. Altogether, the lack of Crtl1 generates aberrant PNNs that alter excitatory synapses and change the physiological properties of motoneurons, overall altering spinal circuits and producing motor impairment. This disorganization generates a permissive scenario for contralateral axons to sprout after injury.
Grants: Fundació la Marató de TV3 TV3-201736-30-31
Agencia Estatal de Investigación RTI2018-101105-B-I00
Note: Altres ajuts: acords transformatius de la UAB
Rights: Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. Creative Commons
Language: Anglès
Document: Article ; recerca ; Versió publicada
Subject: Link protein 1 ; Locomotion ; Perineuronal nets ; Plasticity ; Spinal cord injury
Published in: Experimental Neurology, Vol. 358 (2022) , art. 114220, ISSN 1090-2430

DOI: 10.1016/j.expneurol.2022.114220
PMID: 36064003


16 p, 6.8 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Health sciences and biosciences > Institut de Neurociències (INc)
Articles > Research articles
Articles > Published articles

 Record created 2023-09-27, last modified 2023-11-29



   Favorit i Compartir