Google Scholar: citations
Nilpotent Bicenters in Continuous Piecewise Z2 -Equivariant Cubic Polynomial Hamiltonian Vector Fields : Cusp-Cusp Type
Chen, Ting (Guangdong University of Finance and Economics. School of Statistics and Mathematics)
Llibre, Jaume (Universitat Autònoma de Barcelona. Departament de Matemàtiques)

Date: 2023
Abstract: In this paper, we study the global dynamics for a class of continuous piecewise Z2-equivariant cubic Hamiltonian vector fields with nilpotent bicenters at (±1, 0). We consider these polynomial vector fields with a challenging case where the bicenters (±1, 0) come from the combination of two nilpotent cusps separated by y = 0. We call it a cusp-cusp type. We use the Poincare compactification, the blow-up theory, the index theory and the theory of discriminant sequence for determining the number of distinct or negative real roots of a polynomial, to classify the global phase portraits of these vector fields in the Poincare disc.
Rights: Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.
Language: Anglès
Document: Article ; recerca ; Versió acceptada per publicar
Subject: Nilpotent ; Bicenters ; Hamiltonian ; Phase portrait
Published in: International journal of bifurcation and chaos in applied sciences and engineering, Vol. 33, Issue 12 (September 2023) , art. 2350138, ISSN 1793-6551

DOI: 10.1142/S0218127423501389


Postprint
36 p, 5.6 MB

The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > GSD (Dynamical systems)
Articles > Research articles
Articles > Published articles

 Record created 2024-02-27, last modified 2025-03-23



   Favorit i Compartir