Nilpotent Bicenters in Continuous Piecewise Z2 -Equivariant Cubic Polynomial Hamiltonian Vector Fields : Cusp-Cusp Type
Chen, Ting 
(Guangdong University of Finance and Economics. School of Statistics and Mathematics)
Llibre, Jaume 
(Universitat Autònoma de Barcelona. Departament de Matemàtiques)
| Date: |
2023 |
| Abstract: |
In this paper, we study the global dynamics for a class of continuous piecewise Z2-equivariant cubic Hamiltonian vector fields with nilpotent bicenters at (±1, 0). We consider these polynomial vector fields with a challenging case where the bicenters (±1, 0) come from the combination of two nilpotent cusps separated by y = 0. We call it a cusp-cusp type. We use the Poincare compactification, the blow-up theory, the index theory and the theory of discriminant sequence for determining the number of distinct or negative real roots of a polynomial, to classify the global phase portraits of these vector fields in the Poincare disc. |
| Rights: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Language: |
Anglès |
| Document: |
Article ; recerca ; Versió acceptada per publicar |
| Subject: |
Nilpotent ;
Bicenters ;
Hamiltonian ;
Phase portrait |
| Published in: |
International journal of bifurcation and chaos in applied sciences and engineering, Vol. 33, Issue 12 (September 2023) , art. 2350138, ISSN 1793-6551 |
DOI: 10.1142/S0218127423501389
The record appears in these collections:
Research literature >
UAB research groups literature >
Research Centres and Groups (research output) >
Experimental sciences >
GSD (Dynamical systems)Articles >
Research articlesArticles >
Published articles
Record created 2024-02-27, last modified 2025-03-23