Home > Articles > Published articles > Critical periods in planar polynomial centers near a maximum number of cusps |
Date: | 2024 |
Abstract: | We provide the best lower bound for the number of critical periods of planar polynomial centers known up to now. The new lower bound is obtained in the Hamiltonian class and considering a single period annulus. This lower bound doubles the previous one from the literature, and we end up with at least n2 - 2 (resp. n2 - 2n - 1) critical periods for planar polynomial systems of odd (resp. even) degree n. Key idea is the perturbation of a vector field with many cusp equilibria, whose construction is by itself a nontrivial construction that uses elements of catastrophe theory. |
Grants: | Agencia Estatal de Investigación PID2019-104658GB-I00 Ministerio de Ciencia e Innovación CEX2020-001084-M Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00113 |
Rights: | Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, i la comunicació pública de l'obra, sempre que no sigui amb finalitats comercials, i sempre que es reconegui l'autoria de l'obra original. No es permet la creació d'obres derivades. |
Language: | Anglès |
Document: | Article ; recerca ; Versió acceptada per publicar |
Subject: | Critical periods ; Hamiltonian vector fields ; Best lower bound ; Degree n vector field |
Published in: | Journal of differential equations, Vol. 380 (January 2024) , p. 181-197, ISSN 1090-2732 |
Available from: 2026-01-31 Postprint |
The record appears in these collections:
Research literature > UAB research groups literature > Research Centres and Groups (research output) > Experimental sciences > GSD (Dynamical systems)
Articles > Research articles
Articles > Published articles