| Home > Articles > Published articles > Global Analysis of Riccati Quadratic Differential Systems |
| Date: | 2024 |
| Abstract: | In this paper, we study the family of quadratic Riccati differential systems. Our goal is to obtain the complete topological classification of this family on the Poincaré disk compactification of the plane. The family was partially studied before but never from a truly global viewpoint. Our approach is global and we use geometry to achieve our goal. The geometric analysis we perform is via the presence of two invariant parallel straight lines in any generic Riccati system. We obtain a total of 119 topologically distinct phase portraits for this family. Furthermore, we give the complete bifurcation diagram in the 12-dimensional space of parameters of this family in terms of invariant polynomials, meaning that it is independent of the normal forms in which the systems may be presented. This bifurcation diagram provides an algorithm to decide for any given quadratic system in any form it may be presented, whether it is a Riccati system or not, and in case it is to provide its phase portrait. |
| Grants: | Agencia Estatal de Investigación PID2019-104658GB-I00 European Commission 777911 Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00113 |
| Rights: | Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Quadratic vector fields ; Bifurcation ; Topological equivalence ; Riccati system ; Poincaré compactification ; Affine invariant polynomial ; Configuration of invariant lines |
| Published in: | International journal of bifurcation and chaos in applied sciences and engineering, Vol. 34, Issue 1 (January 2024) , art. 2450004, ISSN 1793-6551 |
Postprint 52 p, 3.7 MB |