| Home > Articles > Published articles > New families of global cubic centers |
| Date: | 2024 |
| Abstract: | An equilibrium point p of a differential system in the plane R2 is a center if there exists a neighbourhood U of p such that U\{p} is filled with periodic orbits. A difficult classical problem in the qualitative theory of differential systems in the plane R2 is the problem of distinguishing between a focus and a center. A global center is a center p such that R2\{p} is filled with periodic orbits. Another difficult problem in the qualitative theory of differential systems in R2 is to distinguish inside a family of centers the ones which are global. Lloyd, Pearson and Romanovsky characterized when the origin of coordinates is a center for the family of cubic polynomial differential systems x˙=y-Cx+B+2Dxy+Cy+Px+Gxy-H+3Pxy+Ky,y˙=-x+Dx+E+2Cxy-Dy-Kx-H+3Pxy-Gxy+Py. Here we characterize when the origin of this family of differential system is a global center. |
| Grants: | Agencia Estatal de Investigación PID2019-104658GB-I00 European Commission 777911 Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-00113 |
| Note: | Altres ajuts: Acadèmia de Ciències i Arts de Barcelona |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Center ; Global center ; Cubic polynomial differential systems |
| Published in: | São Paulo Journal of Mathematical Sciences, Vol. 18 (December 2024) , p. 1454-1469, ISSN 2316-9028 |
Postprint 14 p, 300.3 KB |