| Home > Articles > Published articles > On the number of stable solutions in the Kuramoto model |
| Date: | 2023 |
| Abstract: | We consider a system of n coupled oscillators described by the Kuramoto model with the dynamics given by θ ˙ = ω + K f (θ). In this system, an equilibrium solution θ ∗ is considered stable when ω + K f (θ ∗) = 0, and the Jacobian matrix D f (θ ∗) has a simple eigenvalue of zero, indicating the presence of a direction in which the oscillators can adjust their phases. Additionally, the remaining eigenvalues of D f (θ ∗) are negative, indicating stability in orthogonal directions. A crucial constraint imposed on the equilibrium solution is that | Γ (θ ∗) | ≤ π, where | Γ (θ ∗) | represents the length of the shortest arc on the unit circle that contains the equilibrium solution θ ∗. We provide a proof that there exists a unique solution satisfying the aforementioned stability criteria. This analysis enhances our understanding of the stability and uniqueness of these solutions, offering valuable insights into the dynamics of coupled oscillators in this system. |
| Grants: | Agencia Estatal de Investigación PID2021-128005NB-C21 Agència de Gestió d'Ajuts Universitaris i de Recerca 2021/SGR-633 Generalitat de Catalunya PDAD14/20/00001 Ministerio de Ciencia, Innovación y Universidades MTM2020-118281GB-C33 European Commission 101092749 |
| Rights: | Aquest document està subjecte a una llicència d'ús Creative Commons. Es permet la reproducció total o parcial, la distribució, la comunicació pública de l'obra i la creació d'obres derivades, fins i tot amb finalitats comercials, sempre i quan es reconegui l'autoria de l'obra original. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió publicada |
| Published in: | Chaos, Vol. 33, Issue 9 (September 2023) , art. 93127, ISSN 1089-7682 |
9 p, 1.0 MB |