| Home > Articles > Published articles > Crossing limit cycles for discontinuous piecewise linear differential centers separated by three parallel straight lines |
| Date: | 2023 |
| Abstract: | In this paper we study the continuous and discontinuous planar piecewise differential systems formed by four linear centers separated by three parallel straight lines denoted by Σ = {(x,y) ∈ R2 : x = -p, x = 0, x = q, p, q > 0}. We prove that when these piecewise differential systems are continuous they have no limit cycles. While for the discontinuous case we show that they can have at most four limit cycles and we also provide examples of such systems with zero, one, and two limit cycles. In particular we have solved the extension of the 16th Hilbert problem to this class of piecewise differential systems. |
| Grants: | Agencia Estatal de Investigación PID2019-104658GB-I00 European Commission 777911 |
| Rights: | Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets. |
| Language: | Anglès |
| Document: | Article ; recerca ; Versió acceptada per publicar |
| Subject: | Limit cycles ; Linear centers ; Continuous piecewise differential systems ; Discontinuous piecewise differential systems ; First integrals |
| Published in: | Rendiconti del Circolo Matematico di Palermo, Vol. 72, Issue 3 (April 2023) , p. 1739-1750, ISSN 1973-4409 |
Postprint 12 p, 317.0 KB |