Per citar aquest document: http://ddd.uab.cat/record/5129
Fourier restriction to convex surfaces of revolution in R3
Abi-Khuzam, Faruk
Shayya, Bassam

Data: 2006
Resum: If Γ is a C3 hypersurface in Rn and dσ is induced Lebesgue measure on Γ, then it is well known that a Tomas-Stein Fourier restriction estimate on Γ implies that Γ has a nowhere vanishing Gaussian curvature. In a recent paper, Carbery and Ziesler observed that if induced Lebesgue measure is replaced by affine surface area, then a Tomas-Stein restriction estimate on Γ implies that Γ satisfies the affine isoperimetric inequality. Since the only property needed for a hypersurface to satisfy the affine isoperimetric inequality is convexity, this raised the question of whether a TomasStein restriction estimate can be obtained for flat but convex hypersurfaces in Rn such as Γ(x) = (x, e−1/ $m ), m = 1, 2, . . . . We prove that this is indeed the case in dimension n = 3.
Drets: Tots els drets reservats.
Llengua: Anglès.
Document: Article ; recerca ; article ; publishedVersion
Publicat a: Publicacions Matemàtiques, V. 50 n. 1 (2006) p. 71-85, ISSN 0214-1493

DOI: 10.5565/PUBLMAT_50106_04


15 p, 178.5 KB

El registre apareix a les col·leccions:
Articles > Articles publicats > Publicacions matemàtiques
Articles > Articles de recerca

 Registre creat el 2006-05-09, darrera modificació el 2016-06-12



   Favorit i Compartir