Per citar aquest document:
Metric properties of outer space
Francaviglia, Stefano
Martino, Armando

Data: 2011
Resum: We define metrics on Culler-Vogtmann space, which are an analogue of the Thurston metric and are constructed using stretching factors. In fact the metrics we study are related, one being a symmetrised version of the other. We investigate the basic properties of these metrics, showing the advantages and pathologies of both choices. We show how to compute stretching factors between marked metric graphs in an easy way and we discuss the behaviour of stretching factors under iterations of automorphisms. We study metric properties of folding paths, showing that they are geodesic for the non-symmetric metric and, if they do not enter the thin part of Outer Space, quasi-geodesic for the symmetric metric.
Drets: Tots els drets reservats
Llengua: Anglès.
Document: article ; recerca ; publishedVersion
Publicat a: Publicacions Matemàtiques, Vol. 55, Núm. 2 (2011) , p. 433-473, ISSN 0214-1493

DOI: 10.5565/PUBLMAT_55211_09

41 p, 530.9 KB

El registre apareix a les col·leccions:
Articles > Articles publicats > Publicacions matemàtiques
Articles > Articles de recerca

 Registre creat el 2011-09-06, darrera modificació el 2016-06-11

   Favorit i Compartir