Per citar aquest document:
Bayesian joint modelling of the mean and covariance structures for normal longitudinal data
Cepeda-Cuervo, Edilberto (Universidad Nacional de Colombia,)
Núñez-Antón, Vicente (Universidad del País Vasco)

Data: 2007
Resum: We consider the joint modelling of the mean and covariance structures for the general antedependence model, estimating their parameters and the innovation variances in a longitudinal data context. We propose a new and computationally efficient classic estimation method based on the Fisher scoring algorithm to obtain the maximum likelihood estimates of the parameters. In addition, we also propose a new and innovative Bayesian methodology based on the Gibbs sampling, properly adapted for longitudinal data analysis, a methodology that considers linear mean structures and unrestrictedcovariance structures for normal longitudinal data. We illustrate the proposed methodology and study its strengths and weaknesses by analyzing two examples, the race and the cattle data sets.
Drets: Tots els drets reservats
Llengua: Anglès
Document: article ; recerca ; publishedVersion
Matèria: Antedependence models ; Bayes estimation ; Fisher scoring ; Gibbs sampling
Publicat a: SORT : statistics and operations research transactions, Vol. 31, Núm. 2 (July-December 2007) , p. 181-200, ISSN 1576-2270

20 p, 149.9 KB
 Accés restringit a la UAB

El registre apareix a les col·leccions:
Articles > Articles publicats > SORT : Statistics and Operations Research Transactions
Articles > Articles publicats > Ontology studies

 Registre creat el 2012-07-20, darrera modificació el 2014-07-16

   Favorit i Compartir
QR image