Asymptotic L1-decay of solutions of the porous medium equation to self-similarity
Carrillo de la Plata, José Antonio (University of Texas at Austin. Department of Mathematics)
Toscani., G. (University of Pavia. Department of Mathematics)
| Data: |
2000 |
| Resum: |
We consider the flow of gas in an N -dimensional porous medium with initial density v0 (x) ≥ 0. The density v(x, t) then satisfies the nonlinear degenerate parabolic equation vt = ∆v m where m > 1 is a physical constant. Assuming that (1 + $2 )v0 (x) dx < ∞, we prove that v(x, t) behaves asymptotically, as t → ∞, like the Barenblatt-Pattle solution V ( $, t). We prove that the L1 -distance decays at a rate t 1/((N+2)m−N) . Moreover, if N = 1, we obtain an explicit time decay for the L∞ distance at a suboptimal rate. The method we use is based on recent results we obtained for the Fokker-Planck equation [2], [3]. |
| Drets: |
Aquest material està protegit per drets d'autor i/o drets afins. Podeu utilitzar aquest material en funció del que permet la legislació de drets d'autor i drets afins d'aplicació al vostre cas. Per a d'altres usos heu d'obtenir permís del(s) titular(s) de drets.  |
| Llengua: |
Anglès |
| Document: |
Article ; Versió publicada |
| Publicat a: |
Indiana University mathematics journal, Vol. 49, No. 1 (2000) , p. 113-142, ISSN 0022-2518 |
DOI: 10.1512/iumj.2000.49.1756
El registre apareix a les col·leccions:
Articles >
Articles publicats
Registre creat el 2014-02-03, darrera modificació el 2024-11-27