A branch-and-cut algorithm for the equicut problem
Brunetta, Lorenzo
Conforti, Michel
Rinaldi, Giovanni

Data: 1997
Resum: We describe an algorithm for solving the equicut problem on complete graphs. The core of the algorithm is a cutting-plane procedure that exploits a subset of the linear inequalities defining the convex hull of the incidence vectors of the edge sets that define an equicut. The cuts are generated by several separation procedures that will be described in the paper. Whenever the cutting-plane procedure does not terminate with an optimal solution, the algorithm uses a branch-and-cut strategy. We also describe the implementation of the algorithm and the interface with the LP solver. Finally, we report on computational results on dense instances with sizes up to 100 nodes. .
Drets: Tots els drets reservats.
Llengua: Anglès
Document: Article ; recerca ; Versió publicada
Matèria: Equicut ; Max-cut ; Polyhedral theory ; Cutting-plane algorithm ; Heuristic algorithm ; Branch-and-cut
Publicat a: Mathematical Programming, vol. 78 n. 2 (1997) p. 243-263, ISSN 0025-5610



21 p, 1.2 MB
 Accés restringit a la UAB

El registre apareix a les col·leccions:
Articles > Articles de recerca
Articles > Articles publicats

 Registre creat el 2006-03-13, darrera modificació el 2023-06-03



   Favorit i Compartir